Spontaneous Intracerebral Hemorrhage

Raul G Nogueira, MD
Vascular and Critical Care Neurology
Interventional Neuroradiology and Endovascular Neurosurgery
Massachusetts General Hospital
Harvard Medical School
Boston, MA

ICH Is Common
Incidence Predicted to Increase

ICH Proportion of Strokes (US)

ICH 9%
SAH 3%

700,000 Total Strokes Annually

No. of Persons

ICH Ischemic

Proportion of patients (%)

Dead
Dependent
Independent

Mortality
– 6-month, 30%-50%
– 1-year, 50%

Only 20% of ICH patients are independent at 6 months vs 60% of ischemic stroke patients

Medical costs
– US$125,000 lifetime cost per person (1990)
– Direct and indirect costs (lost productivity + caregiver burden)

High-Risk Populations

- Hypertensive patients (especially poorly controlled)
- Anticoagulant users
- Patients with multiple comorbid risk factors
- Age >55 years
- Patients with cerebral microangiopathy (eg, cerebral amyloid angiopathy)
- Patients with dementia
- Certain ethnic populations – African Americans – Hispanics – Asians (especially Japanese)
- Alcohol abusers
- Smokers
- Patients with renal or liver failure

Traditionally High Mortality and Limited Recovery

Predictors of Outcome

- Hematoma volume
- GCS
- Intraventricular hemorrhage
- Age
- ICH location (deep)
- Increased cerebral edema (midline shift, herniation)

Sites of Spontaneous ICH

Lobar Subcortical Hemorrhage (25%)
Putaminal Hemorrhage (25%)
Thalamic Hemorrhage (25%)
Pontine Hemorrhage (7%)
Cerebellar Hemorrhage (5%)

Recurrence Risk Distinguishes Lobar from Deep ICH

Viswanathan Neurology. 2006;66:206

Mechanisms of Injury

Early hematoma growth
- Hematoma enlargement
- Increase in ICP, tissue disruption and shear forces

Edema and toxic effects of blood products
- Osmotically active serum products
- Thrombin
- Inflammatory response

Hematoma Expansion

- 72% have some hematoma expansion over the first 24 hours
- 36% have significant (>33%) expansion over 24 hours
- In 26% of these cases, the enlargement is within 1 hour

Hematoma Expansion

Contrast extravasation is independently associated with hematoma expansion and worse outcomes!

Patient with spot sign, demonstrating extravasation and hematoma expansion

Wada, R. et al. Stroke 2007;38;1257-1262

Common Etiologies of ICH

Primary Hypertension
Features and Characteristics

- Typical sites
 - Putamen - 50%
 - Thalamus - 15%
 - Lobar - 15%
 - Cerebellum - 10%
 - Pons - 10%

- Typically more severe than cerebral amyloid angiopathy-related ICH
- Risk of recurrence ~2% annually (if BP controlled)

Cerebral Amyloid Angiopathy
Features and Characteristics

- Location
 - Lobar hemorrhage
 - Multiple, bilateral
 - Pareto-occipital location
- Associated with dementia/AD
- Elderly patients (>70 years)
- Typically less severe than HTN-related ICH
- Risk of recurrence 0%-15% annually
- Microbleeds on gradient-echo MRI

Common Etiologies of ICH

Acquired Coagulopathy – Anticoagulation

- Warfarin indicated in DVT, PE, AF
- Incidence of anticoagulant-associated ICH rise from 5% to 18% of cases of spontaneous ICH in 1990s
- INR 2.5-4.5 increases risk of ICH 10X
- Associated with longer duration of ICH expansion
- Doubles ICH mortality!

Common Etiologies of ICH

Acquired Coagulopathy – Thrombolytic Therapy

- tPA increases risk of ICH (6% absolute risk in NINDS trial)
- 18.5% of bleeds at sites distant from stroke
- Risk factors
 - Age >70 years
 - Serum glucose >300 mg/dL
 - NIHSS >20
 - Early ischemic changes detected on CT
 - Not time to treatment!

Other Etiologies of ICH

Drug-related

- Cocaine
- Amphetamines
- Other illicit drugs (eg, talwin-pyribenzamine, phencyclidine)
- MAO inhibitors

Other Etiologies of ICH

Vascular lesions

- Cerebral aneurysm
- Arteriovenous malformations
- Dural A-V fistulas
- Cavernous malformation
- Venous angioma/capillary telangiectasia

Other Etiologies of ICH

Hemorrhagic conversion of ischemic stroke

Neoplasms
Melanoma
Renal Cell Ca
Thyroid Ca
ChorioCa
Lung Ca

Other Etiologies of ICH

Cerebral aneurysm

Pial Arteriovenous Malformations

61 y/o man p/w acute onset of speech difficulties and right HH in the setting of a left tempo-occipital ICH
45 YEAR OLD MAN PRESENTS WITH HEADACHES AND CONFUSION

BASELINE ANGIOGRAM

SCREENING FOR ICH
Clinical Symptoms

The likelihood of ICH doubles* when one of the following is present:

- Impaired level of consciousness
- Vomiting
- Severe headache
- Warfarin therapy
- SBP >220 mm Hg
- Hyperglycemia (glucose >170 mg/dL) in non-diabetic patients

*Likelihood ratio 2.4; 95% CI, 1.8-3.2.

ICH MANAGEMENT IN ED
Assessment and Stabilization

Activate Stroke Team Prior to Arrival

Immediate General Assessment/Stabilization

- Assess ABCs/vital signs, monitor BP closely
- O2 (if hypoxic)
- IV access and labs (coagulation, platelets, CBC, electrolytes)
- Check glucose and treat (if indicated)
- Quick history
- Neurologic screening assessment (GCS, NIHSS)
- Emergent CT scan of brain (ASAP)
- 12-lead ECG

Diagnosis of ICH

AHA Guidelines (2007)

- Vomiting, early change LOC, and ↑ BP suggest ICH
- CT or MRI are both first choice for initial evaluation
- MRI and MRA in selected patients
 - Suspected cavernous malformation in normotensive surgical candidates with lobar hemorrhage
- Consider angiography (CTA or angiogram)
 - All surgical candidates without clear cause
 - Particularly young, clinically stable patients
 - Timing depends on factors including clinical state

Diagnostic Imaging

“Blood in the Brain” – What Type of Hemorrhage?

- Intracerebral hemorrhage (ICH)
- Intraventricular hemorrhage (IVH)
- Subarachnoid hemorrhage (SAH)

Images courtesy of ITAM Scientific Committee.

General Management of ICH

Goals

- Provide general supportive care in the ED and ICU/NICU to manage the primary brain injury and limit the secondary brain injury

 - Continue to support ABCs
 - Monitoring (BP, fever, ICP, labs)
 - Intubation
 - BP management
 - Seizure management
 - Reverse anticoagulation immediately

Should BP Be Lowered in ICH?

- Current data are inconclusive as to whether BP lowering is useful and about defining a target

 - **Potential benefits**
 - Limit hematoma growth
 - Decrease perihematoma edema
 - Isolated ICH with no stenosis and no temporal relationship
 - Baseline BP not associated with ICH growth in the largest prospective study of ICH growth

 - **Potential downside**
 - Create or exacerbate perihematoma ischemia
 - No significant change was observed in either global CBF or percent CBF as measured by PET after 15% MAP reduction

- Even if BP lowering isn’t harmful, does it help?
 - Antihypertensive Treatment in Acute Cerebral Hemorrhage (ATACH) Study
 - INTERACT study (Intensive Blood Pressure Reduction in Acute Cerebral Hemorrhage)

- Different approaches based on ICH etiology (AVM, aneurysm, CAA)

ICH Mortality Rate Is Reduced With Admission to an NICU

- Non-NICU admission is associated with increased in-hospital mortality (OR, 3.4; 95% CI, 1.65-7.6)

Images courtesy of ITAM Scientific Committee.

Should BP Be Lowered in ICH?

- Current data are inconclusive as to whether BP lowering is useful and about defining a target

 - **Potential benefits**
 - Limit hematoma growth
 - Decrease perihematoma edema
 - Isolated ICH with no stenosis and no temporal relationship
 - Baseline BP not associated with ICH growth in the largest prospective study of ICH growth

 - **Potential downside**
 - Create or exacerbate perihematoma ischemia
 - No significant change was observed in either global CBF or percent CBF as measured by PET after 15% MAP reduction

- Even if BP lowering isn’t harmful, does it help?
 - Antihypertensive Treatment in Acute Cerebral Hemorrhage (ATACH) Study
 - INTERACT study (Intensive Blood Pressure Reduction in Acute Cerebral Hemorrhage)

- Different approaches based on ICH etiology (AVM, aneurysm, CAA)

Images courtesy of ITAM Scientific Committee.

Tables

TABLE 3. Suggested Revascularization Guidelines for Treating Ischemic Cerebral Infarctions Due to Intracranial Aneurysm and Dural Arteriovenous Fistulae

<table>
<thead>
<tr>
<th>Type</th>
<th>Antihypertensive Drugs</th>
<th>Corticosteroids</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICH</td>
<td>Olmesartan 10 mg daily</td>
<td>40 mg/day 5%</td>
</tr>
<tr>
<td></td>
<td>Captopril 12.5 mg daily</td>
<td>15 mg/day 5%</td>
</tr>
</tbody>
</table>

TABLE 4. Intravenous Medications That May Be Considered for Control of Elevated Blood Pressure in Patients With ICH

<table>
<thead>
<tr>
<th>Type</th>
<th>Drug Name</th>
<th>Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICH</td>
<td>Labetalol</td>
<td>50-100 mg IV bolus</td>
</tr>
<tr>
<td></td>
<td>Propranolol</td>
<td>80-160 mg IV bolus</td>
</tr>
</tbody>
</table>

Images courtesy of ITAM Scientific Committee.
Seizures and ICH

- Seizures are more frequent in ICH than in ischemic stroke
- Seizure risk is 8% after ICH
- Most seizures at onset or ≤24 h of ICH
- More commonly associated with lobar than deep ICH

- Poorer outcomes
 - Neuronal injury and destabilization of critically ill patient
 - Nonconvulsive seizures may contribute to coma
 - Seizures associated with deterioration of NIHSS and increase in midline shift

Management of Seizures

- AHA guidelines recommend administering anticonvulsants for seizure at onset of ICH
- Consider anticonvulsants for ≤1 month in selected patients with lobar hemorrhage

ICH Expansion

ED Management:
Preventing Hematoma Expansion

- Warfarin reversal
- Hemostatic therapy (clinical trial)
- Blood pressure control (clinical trial)

Reversing Warfarin Effect: Time Counts!

- 69 consecutive patients with warfarin-related ICH
- All patients had repeated INR measures and were treated aggressively for ICH in the MGH ED

INR reversed at 24 hours

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>No (N=12)</th>
<th>Yes (N=57)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Door to CT (min)</td>
<td>62 (30-90)</td>
<td>45 (25-45)</td>
<td>0.5</td>
</tr>
<tr>
<td>CT to FFP (min)</td>
<td>210 (100-375)</td>
<td>90 (60-205)</td>
<td>0.02</td>
</tr>
<tr>
<td>FFP dose (units)</td>
<td>2 (1-5)</td>
<td>4 (2-8)</td>
<td>0.1</td>
</tr>
<tr>
<td>CT to Vitamin K (min)</td>
<td>246 (37-361)</td>
<td>87 (25-210)</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Should All Patients Be Reversed?

Because of the high mortality of OAT-ICH and high risk of hematoma expansion, ALL OAT-ICH patients should receive rapid and complete reversal of anticoagulant effect in the Emergency Department.
Reversing Warfarin Effect in the Emergency Department

Current MGH Guidelines for ICH patients

- Vitamin K 10 mg IV over 10 minutes STAT
- FFP 10 ml/kg over 90 minutes (Prothrombin Concentrate may be substituted for FFP.)
- Team must designate a single physician to take personal responsibility for ensuring that these therapies are administered as fast as possible.
- As soon as FFP ordered, “runner” dispatched to blood bank to collect FFP.

www.stopstroke.org

Reversing Anticoagulation (cont.)

- ASA-related coagulopathy
 - Platelet transfusion
- No antidote for clopidogrel-related coagulopathy
- Thrombolytic therapy-related coagulopathy
 - Stop thrombolytic agent
 - 6-8 units of cryoprecipitate containing factor VIII
 - 6-8 units of platelets
- Heparin- and enoxaparin-induced anticoagulation
 - Protamine sulfate

Reducing Hematoma Expansion

Many Potential Hemostatic Agents

- Aminocaproic acid
- Prothrombin-complex concentrates
 - Concentrated vitamin K–dependent factors (factors II, VII, IX, X)
- Recombinant factor VIIa
- DDAVP (Desmopressin)
- Tranexamic acid
- Cryoprecipitate
- Aprotinin (Trasylol)

Reversing Anticoagulation

ICH in any patient on warfarin (with INR ≥1.5) should be considered life-threatening

Goal → Normalize INR to <1.4 ASAP

- Time until initiation of warfarin reversal is the strongest predictor of 24-h coagulation reversal
- Reversal may not occur in 1 of 6 patients

Reducing Hematoma Expansion Early Hemostatic Therapy With Factor VIIa

- Currently approved for use in hemophiliacs; initiates hemostasis
- Well suited for limiting early hematoma growth in ICH
- Local effects in endothelial disruption and vascular injury
- Reduces bleeding in patients without coagulopathy
- Rapidly normalizes INR in anticoagulant-associated ICH
- Has been studied as a therapy for ICH in:
 - 2 phase IIa dose-escalation studies
 - Phase IIb global dose-response study
 - Phase III

Reducing Hematoma Expansion

rFVIIa Phase Ib Dose-Response Study

Change in Hematoma Volume at 24 Hours

Percent Change in ICH Volume: Baseline → 24 Hours

<table>
<thead>
<tr>
<th>Treatment</th>
<th>% Increase</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placebo</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>rFVIIa 40 µg/kg</td>
<td>16%</td>
<td>0.07</td>
</tr>
<tr>
<td>rFVIIa 80 µg/kg</td>
<td>14%</td>
<td>0.049</td>
</tr>
<tr>
<td>rFVIIa 160 µg/kg</td>
<td>14%</td>
<td>0.015*</td>
</tr>
<tr>
<td>Combined Treatment</td>
<td>16%</td>
<td>0.012*</td>
</tr>
</tbody>
</table>

*ICTR values

Functional Outcome at 90 Days

Modified Rankin Scale

- 0-1: no significant disability
- 2-3: slight to moderate disability
- 4-5: moderate–severe to severe disability
- 6: dead

For rFVIIa 160 µg/kg:

- 38% survival

Conclusions

- Compared with placebo, rFVIIa treatment:
 - Significantly reduced hematoma growth (P=.01)
 - Significantly reduced mortality: 38% decrease (P=.02)
 - Significantly improved patient outcome
- Thromboembolic serious adverse events, mainly myocardial and cerebral infarction, occurred in 7% of rFVIIa patients compared with 2% of placebo patients (P=.12)
- Thromboembolic serious adverse events that were possibly or probably related to treatment and that were fatal or disabling occurred in 2% of rFVIIa-treated patients and in 2% of the placebo group.

Management of Increased ICP

Treatment Options

- **Osmotherapy**
 - 3% or 23.4% saline
 - Mannitol bolus
 - 0.25-0.5 g/kg q4h
 - Target 3-10 mOsm/L
 - Avoid hypo-osmolar fluids
 - Maintain euolemia
- **Positional factors**
 - Raise head of bed 30°
 - Keep head at midline
 - Avoid head and neck positions that compress jugular veins
 - Avoid flat-supine position
 - Tracheostomy/ETT ties loose
- **Sedation, short-term neuromuscular paralysis**
- **Ventricular drain.** (especially for hydrocephalus)

Osmotheraphy

- 3% Bor 23.4% saline
- Mannitol bolus
 - 0.25-0.5 g/kg q4h
 - Target 3-10 mOsm/L
- Avoid hypo-osmolar fluids
- Maintain euolemia
- **Positional factors**
 - Raise head of bed 30°
 - Keep head at midline
 - Avoid head and neck positions that compress jugular veins
 - Avoid flat-supine position
 - Tracheostomy/ETT ties loose
- **Sedation, short-term neuromuscular paralysis**
- **Ventricular drain.** (especially for hydrocephalus)

Other Issues in Medical Management

- **Steroids** – No
- **Fever is bad**
 - Does controlling fever help?
 - Important in first 24 hours
- **Hyperglycemia**
 - Insulin infusions are en vogue in ischemic stroke
 - Little data for ICH either way
- **Don’t forget DVT prophylaxis**
 - When can heparin be started?
 - Some say never and to use TEDS/SCDs
 - Others start SQ heparin or LMWH sometime after 48 hours
 - DVT = IVC Filter
- **Don’t forget nutrition!**
- **Start rehab early**
 - Begin range-of-motion exercises in ICU, even in comatose patients
 - Extent of rehab activities will depend on patient’s condition

Surgical Intervention in ICH

Goal

- Remove as much blood clot as possible, as quickly as possible, with the least amount of brain trauma

Surgical Modalities: Craniotomy, Stereotactic

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open craniotomy</td>
<td>+ Gets all the blood</td>
</tr>
<tr>
<td></td>
<td>– Invasive, disrupts tissue</td>
</tr>
<tr>
<td>Endoscopic aspiration</td>
<td>+ Visualization</td>
</tr>
<tr>
<td></td>
<td>– Slow, leaves volume</td>
</tr>
<tr>
<td>Stereotactic evacuation</td>
<td>+ No disruption</td>
</tr>
<tr>
<td></td>
<td>– Slow, leaves volume</td>
</tr>
<tr>
<td>Intra-hematoma thrombolysis?</td>
<td></td>
</tr>
</tbody>
</table>

Surgical Issues

- Evidence that it works?
- Careful diagnosis
- Timing of intervention: ultra-early, early, late
- Site of hemorrhage
- Technique – craniotomy, stereotactic
- Consistent, good medical management
 - Monitoring
 - Preventing re-bleeding
 - Managing BP
- Understand pathophysiology

Restarting Anticoagulation After ICH ACC/AHA 2006 Guideline

- Discontinue anticoagulants and antiplatelets ≥1-2 weeks
- Reverse anticoagulation as soon as possible (vitamin K, FFP)
- If required, resume oral anticoagulation after 3-4 weeks (rigorous monitoring, INR in lower range); if anticoagulation is needed sooner after ICH, IV heparin (with PTT 1.5 to 2.0 times normal) or LMWH may be better acute therapy than oral warfarin
- Higher risk of recurrent ICH if anticoagulation resumed in lobar ICHs, microbleeds, and suspected CAA on MRI

Adapted from Sacco RL et al. Stroke. 2006;37:577-587.

STICH

International Surgical Trial in Intracerebral Hemorrhage

- Randomized prospective trial
- N=1033
- Early surgery (24 h to surgery; >96 h from onset) vs initial conservative treatment
- GCS >5 and ICH diameter ≥2 cm
- 1st outcome = death or disability

Surgical Guidelines

AHA Guidelines (2007)

- Cerebellar hemorrhage ≥3 cm with neurological deterioration or brain stem compression and/or hydrocephalus should have surgical removal of the hemorrhage ASAP (Class I, Level of Evidence B).
- Lobar clots within 1 cm of the surface, evacuation of supratentorial ICH by standard craniotomy might be considered (Class IIb, Level of Evidence B).
- No clear evidence indicates that ultra-early craniotomy improves functional outcome or mortality rate. Operative removal within 12 hours, particularly by less-invasive methods, has the most supportive evidence, but the number of subjects treated within this window is very small (Class IIb, Level of Evidence B).
- Very early craniotomy may be associated with an increased risk of recurrent bleeding (Class IIb, Level of Evidence B).

Treatment of ICH

- Prevention
 - Modify risk factors
 - Control hypertension
 - Limit anticoagulation
- Acute intervention when it occurs
 - After hemostasis
 - rFVIIa for acute ICH
 - Rapid reversal of coagulopathy in warfarin-related ICH
 - Surgery
 - Alternatives to craniotomy
 - Neuroprotection, rehabilitation, etc.
Thank you for your attention!